Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Front Immunol ; 15: 1280525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476239

RESUMO

Background: Glioma pathogenesis related-2 (GLIPR2), an emerging Golgi membrane protein implicated in autophagy, has received limited attention in current scholarly discourse. Methods: Leveraging extensive datasets, including The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Human Protein Atlas (HPA), and Clinical Proteomic Tumor Analysis Consortium (CPTAC), we conducted a comprehensive investigation into GLIPR2 expression across diverse human malignancies. Utilizing UALCAN, OncoDB, MEXPRESS and cBioPortal databases, we scrutinized GLIPR2 mutation patterns and methylation landscapes. The integration of bulk and single-cell RNA sequencing facilitated elucidation of relationships among cellular heterogeneity, immune infiltration, and GLIPR2 levels in pan-cancer. Employing ROC and KM analyses, we unveiled the diagnostic and prognostic potential of GLIPR2 across diverse cancers. Immunohistochemistry provided insights into GLIPR2 expression patterns in a multicenter cohort spanning various cancer types. In vitro functional experiments, including transwell assays, wound healing analyses, and drug sensitivity testing, were employed to delineate the tumor suppressive role of GLIPR2. Results: GLIPR2 expression was significantly reduced in neoplastic tissues compared to its prevalence in healthy tissues. Copy number variations (CNV) and alterations in methylation patterns exhibited discernible correlations with GLIPR2 expression within tumor tissues. Moreover, GLIPR2 demonstrated diagnostic and prognostic implications, showing pronounced associations with the expression profiles of numerous immune checkpoint genes and the relative abundance of immune cells in the neoplastic microenvironment. This multifaceted influence was evident across various cancer types, with lung adenocarcinoma (LUAD) being particularly prominent. Notably, patients with LUAD exhibited a significant decrease in GLIPR2 expression within practical clinical settings. Elevated GLIPR2 expression correlated with improved prognostic outcomes specifically in LUAD. Following radiotherapy, LUAD cases displayed an increased presence of GLIPR2+ infiltrating cellular constituents, indicating a notable correlation with heightened sensitivity to radiation-induced therapeutic modalities. A battery of experiments validated the functional role of GLIPR2 in suppressing the malignant phenotype and enhancing treatment sensitivity. Conclusion: In pan-cancer, particularly in LUAD, GLIPR2 emerges as a promising novel biomarker and tumor suppressor. Its involvement in immune cell infiltration suggests potential as an immunotherapeutic target.


Assuntos
Adenocarcinoma de Pulmão , Glioma , Neoplasias Pulmonares , Humanos , Variações do Número de Cópias de DNA , Proteômica , Biomarcadores , Microambiente Tumoral
2.
PLoS Negl Trop Dis ; 18(2): e0011983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38421953

RESUMO

Schistosomiasis is one of the world's most devastating parasitic diseases, afflicting 251 million people globally. The Neotropical snail Biomphalaria glabrata is an important intermediate host of the human blood fluke Schistosoma mansoni and a predominant model for schistosomiasis research. To fully exploit this model snail for biomedical research, here we report a haplotype-like, chromosome-level assembled and annotated genome of the homozygous iM line of B. glabrata that we developed at the University of New Mexico. Using multiple sequencing platforms, including Illumina, PacBio, and Omni-C sequencing, 18 sequence contact matrices representing 18 haploid chromosomes (2n = 36) were generated (337x genome coverage), and 96.5% of the scaffold sequences were anchored to the 18 chromosomes. Protein-coding genes (n = 34,559), non-coding RNAs (n = 2,406), and repetitive elements (42.52% of the genome) were predicted for the whole genome, and detailed annotations for individual chromosomes were also provided. Using this genomic resource, we have investigated the genomic structure and organization of the Toll-like receptor (TLR) and fibrinogen-domain containing protein (FReD) genes, the two important immune-related gene families. Notably, TLR-like genes are scattered on 13 chromosomes. In contrast, almost all (39 of 40) fibrinogen-related genes (FREPs) (immunoglobulin superfamily (IgSF) + fibrinogen (FBG)) are clustered within a 5-million nucleotide region on chromosome 13, yielding insight into mechanisms involved in the diversification of FREPs. This is the first genome of schistosomiasis vector snails that has been assembled at the chromosome level, annotated, and analyzed. It serves as a valuable resource for a deeper understanding of the biology of vector snails, especially Biomphalaria snails.


Assuntos
Biomphalaria , Hemostáticos , Esquistossomose , Humanos , Animais , Biomphalaria/genética , Haplótipos , Fibrinogênio , Cromossomos/genética
3.
Dev Comp Immunol ; 154: 105150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367887

RESUMO

Schistosomiasis, urogenital and intestinal, afflicts 251 million people worldwide with approximately two-thirds of the patients suffering from the urogenital form of the disease. Freshwater snails of the genus Bulinus (Gastropoda: Planorbidae) serve as obligate intermediate hosts for Schistosoma haematobium, the etiologic agent of human urogenital schistosomiasis. These snails also act as vectors for the transmission of schistosomiasis in livestock and wildlife. Despite their crucial role in human and veterinary medicine, our basic understanding at the molecular level of the entire Bulinus genus, which comprises 37 recognized species, is very limited. In this study, we employed Illumina-based RNA sequencing (RNAseq) to profile the genome-wide transcriptome of Bulinus globosus, one of the most important intermediate hosts for S. haematobium in Africa. A total of 179,221 transcripts (N50 = 1,235) were assembled and the benchmarking universal single-copy orthologs (BUSCO) was estimated to be 97.7%. The analysis revealed a substantial number of transcripts encoding evolutionarily conserved immune-related proteins, particularly C-type lectin (CLECT) domain-containing proteins (n = 316), Toll/Interleukin 1-receptor (TIR)-containing proteins (n = 75), and fibrinogen related domain-containing molecules (FReD) (n = 165). Notably, none of the FReDs are fibrinogen-related proteins (FREPs) (immunoglobulin superfamily (IgSF) + fibrinogen (FBG)). This RNAseq-based transcriptional profile provides new insights into immune capabilities of Bulinus snails, helps provide a framework to explain the complex patterns of compatibility between snails and schistosomes, and improves our overall understanding of comparative immunology.


Assuntos
Bulinus , Esquistossomose Urinária , Humanos , Animais , Bulinus/genética , Schistosoma haematobium/genética , Água Doce , Fibrinogênio
4.
Biomaterials ; 307: 122515, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401481

RESUMO

Implant-associated infections (IAIs) pose a significant threat to orthopedic surgeries. Bacteria colonizing the surface of implants disrupt bone formation-related cells and interfere with the osteoimmune system, resulting in an impaired immune microenvironment and osteogenesis disorders. Inspired by nature, a zeolitic imidazolate framework (ZIF)-sealed smart drug delivery system on Ti substrates (ZSTG) was developed for the "natural-artificial dual-enzyme intervention (NADEI)" strategy to address these challenges. The subtle sealing design of ZIF-8 on the TiO2 nanotubes ensured glucose oxidase (GOx) activity and prevented its premature leakage. In the acidic infection microenvironment, the degradation of ZIF-8 triggered the rapid release of GOx, which converted glucose into H2O2 for disinfection. The Zn2+ released from degraded ZIF-8, as a DNase mimic, can hydrolyze extracellular DNA, which further enhances H2O2-induced disinfection and prevents biofilm formation. Importantly, Zn2+-mediated M2 macrophage polarization significantly improved the impaired osteoimmune microenvironment, accelerating bone repair. Transcriptomics revealed that ZSTG effectively suppressed the inflammatory cascade induced by lipopolysaccharide while promoting cell proliferation, homeostasis maintenance, and bone repair. In vitro and in vivo results confirmed the superior anti-infective, osteoimmunomodulatory, and osteointegrative capacities of the ZSTG-mediated NADEI strategy. Overall, this smart bionic platform has significant potential for future clinical applications to treat IAIs.


Assuntos
Anti-Infecciosos , Zeolitas , Osseointegração , Peróxido de Hidrogênio/farmacologia , Macrófagos , Anti-Infecciosos/farmacologia , Osteogênese
6.
Sci Rep ; 14(1): 1655, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238555

RESUMO

Mitotic catastrophe (MC) is a novel form of cell death that plays an important role in the treatment and drug resistance of colon adenocarcinoma (COAD). However, MC related genes in COAD treatment and prognosis evaluation are rarely studied. In this study, the transcriptome data, somatic mutation and copy number variation data were obtained from The Cancer Genome Atlas (TCGA) database. The mitotic catastrophe related genes (MCRGs) were obtained from GENCARDS website. Differential gene analysis was conducted with LIMMA package. Univariate Cox regression analysis was used to identify prognostic related genes. Mutation analysis was performed and displayed by maftools package. RCircos package was used for localizing the position of genes on chromosomes. "Glmnet" R package was applied for constructing a risk model via the LASSO regression method. Consensus clustering analyses was implemented for clustering different subtypes. Functional enrichment analysis through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) methods, immune infiltration analysis via single sample gene set enrichment analysis (ssGSEA), tumor mutation burden and drug sensitivity analysis by pRRophetic R package were also carried out for risk model or molecular subtype's assessment. Additionally, the connections between the expression of hub genes and overall survival (OS) were obtained from online Human Protein Atlas (HPA) website. Real-Time Quantitative Polymerase Chain Reaction (RT­qPCR) further validated the expression of hub genes. A total of 207 differentially expressed MCRGs were selected in the TCGA cohort, 23 of which were significantly associated with OS in COAD patients. Subsequently, we constructed risk score prognostic models with 5 hub MCRGs, including SYCE2, SERPINE1, TRIP6, LIMK1, and EEPD1. The high-risk patients suffered from poorer prognosis. Furthermore, we developed a nomogram that gathered age, sex, staging, and risk score to accurately forecast the clinical survival outcomes in 1, 3, and 5 years. The results of functional enrichment suggested a significant correlation between MCRGs characteristics and cancer progression, with important implications for the immune microenvironment. Moreover, patients who displayed high TMB and high risk score showed worse prognosis, and risk characteristics were associated with different chemotherapeutic agents. Finally, RT­qPCR verified the increased expression of the five MCRGs in clinical samples. The five MCRGs in the prognostic signature were associated with prognosis, and could be treated as reliable prognostic biomarkers and therapeutic targets for COAD patients with distinct clinicopathological characteristics, thereby providing a foundation for the precise application of pertinent drugs in COAD patients.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Variações do Número de Cópias de DNA/genética , Prognóstico , Morte Celular , Microambiente Tumoral , Quinases Lim , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal , Proteínas com Domínio LIM
7.
Sci Rep ; 14(1): 1820, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245605

RESUMO

Vitellogenesis is the most important process in animal reproduction, in which yolk proteins play a vital role. Among multiple yolk protein precursors, vitellogenin (Vtg) is a well-known major yolk protein (MYP) in most oviparous animals. However, the nature of MYP in the freshwater gastropod snail Biomphalaria glabrata remains elusive. In the current study, we applied bioinformatics, tissue-specific transcriptomics, ovotestis-targeted proteomics, and phylogenetics to investigate the large lipid transfer protein (LLTP) superfamily and ferritin-like family in B. glabrata. Four members of LLTP superfamily (BgVtg1, BgVtg2, BgApo1, and BgApo2), one yolk ferritin (Bg yolk ferritin), and four soma ferritins (Bg ferritin 1, 2, 3, and 4) were identified in B. glabrata genome. The proteomic analysis demonstrated that, among the putative yolk proteins, BgVtg1 was the yolk protein appearing in the highest amount in the ovotestis, followed by Bg yolk ferritin. RNAseq profile showed that the leading synthesis sites of BgVtg1 and Bg yolk ferritin are in the ovotestis (presumably follicle cells) and digestive gland, respectively. Phylogenetic analysis indicated that BgVtg1 is well clustered with Vtgs of other vertebrates and invertebrates. We conclude that, vitellogenin (BgVtg1), not yolk ferritin (Bg yolk ferritin), is the major yolk protein precursor in the schistosomiasis vector snail B. glabrata.


Assuntos
Biomphalaria , Esquistossomose , Animais , Biomphalaria/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Multiômica , Filogenia , Proteômica , Proteínas do Ovo/metabolismo , Ferritinas/genética , Schistosoma mansoni/metabolismo
8.
Sci Rep ; 13(1): 21607, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062199

RESUMO

The recently discovered APRO (anti-proliferative protein) family encodes a group of trans-membrane glycoproteins and includes 6 members: TOB1, TOB2, BTG1, BTG2, BTG3 and BTG4. The APRO family is reportedly associated with the initiation and progression of cancers. This study aims to undertake a comprehensive investigation of the APRO family of proteins as a prognostic biomarker in various human tumors. We performed a pan-cancer analysis of the APRO family based on The Cancer Genome Atlas (TCGA). With the bioinformatics methods, we explored the prognostic value of the APRO family and the correlation between APRO family expression and tumor mutation burden (TMB), microsatellite instability (MSI), drug sensitivity, and immunotherapy in numerous cancers. Our results show that the APRO family was primarily down-regulated in cancer samples. The expression of APRO family members was linked with patient prognosis. In addition, APRO family genes showed significant association with immune infiltrate subtypes, tumor microenvironment, and tumor cell stemness. Finally, our study also demonstrated the relationship between APRO family genes and drug sensitivity. This study provides comprehensive information to understand the APRO family's role as an oncogene and predictor of survival in some tumor types.


Assuntos
Proteínas Imediatamente Precoces , Neoplasias , Humanos , Oncogenes , Imunoterapia , Cognição , Biologia Computacional , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral/genética , Proteínas Supressoras de Tumor/genética
9.
Front Nutr ; 10: 1273509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089925

RESUMO

Objective: Pelvic inflammatory disease (PID) is a prevalent gynecological disorder. Dietary trace minerals play an important role in combating many chronic diseases including PID. However, it is unknown whether dietary trace minerals and PID are related. This study aimed to examine the relationship between dietary trace minerals (copper, iron, selenium, and zinc) and PID. Methods: Data of women participants from the National Health and Nutrition Examination Survey (NHANES) 2015-2018 were enrolled in this cross-sectional investigation. Univariate and multivariate linear regression analyses of the relationship between dietary trace minerals and PID were performed, and restricted cubic spline (RCS) analyses were applied to visualize those relationships. Results: In total, 2,694 women between the ages of 20 and 59 years participated in the two NHANES cycles. In the univariate analyses, a significant negative relationship was identified between PID and dietary copper intake [odds ratio (OR) = 0.40, 95% confidence interval (CI): 0.24-0.67, p < 0.01] but not with iron (OR = 0.96, 95% CI: 0.90-1.03, p = 0.25), selenium (OR = 1.0, 95% CI: 0.99-1.0, p = 0.23), and zinc (OR = 0.94, 95% CI: 0.86-1.03, p = 0.17) intake. Following the adjustment for age and race (model 1), a robust correlation was found between dietary copper intake and PID (OR = 0.23, 95% CI = 0.09-0.61, p < 0.01), as indicated by the fully adjusted model 2 (OR = 0.29, 95% CI = 0.09-0.90, p = 0.03). Simultaneously, a significant trend was found between copper intake and PID across the quintile subgroups (p for trends <0.05), suggesting a robust relationship. Furthermore, the RCS analysis demonstrated a linear correlation between PID and dietary copper intake (overall p < 0.01, non-linear p = 0.09). Conclusion: Decreased dietary copper intakes are linked to PID. However, additional research is needed to fully investigate this relationship due to the constraints of the study design.

10.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139124

RESUMO

Neurodevelopmental disorders (NDDs) include various neurological disorders with high genetic heterogeneity, characterized by delayed or impaired cognition, communication, adaptive behavior, and psychomotor skills. These disorders result in significant morbidity for children, thus burdening families and healthcare/educational systems. However, there is a lack of early diagnosis and effective therapies. Therefore, a more connected approach is required to explore these disorders. Microglia, the primary phagocytic cells within the central nervous system, are crucial in regulating neuronal viability, influencing synaptic dynamics, and determining neurodevelopmental outcomes. Although the neurobiological basis of autism spectrum disorder (ASD) and schizophrenia (SZ) has attracted attention in recent decades, the role of microglia in ASD and SZ remains unclear and requires further discussion. In this review, the important and frequently multifaceted roles that microglia play during neurodevelopment are meticulously emphasized and potential microglial mechanisms that might be involved in conditions such as ASD and SZ are postulated. It is of utmost importance to acquire a comprehensive understanding of the complexities of the interplay between microglia and neurons to design effective, targeted therapeutic strategies to mitigate the effects of NDDs.


Assuntos
Transtorno do Espectro Autista , Esquizofrenia , Criança , Humanos , Microglia/fisiologia , Encéfalo , Neurônios
11.
Food Chem Toxicol ; 182: 114175, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944784

RESUMO

Ganoderma lucidum spore powder is a traditional Chinese medicine with a variety of health benefits. Sporoderm-removed Ganoderma lucidum spores (RGLS) can be more effectively absorbed and utilized by the body. Due to the extensive clinical application and lack of long-term (>30 days) safety evaluation of RGLS, it is necessary to evaluate its repeated dose toxicity during a longer administration period. Here, we conducted a 26-week repeated dose toxicity test of RGLS in Sprague‒Dawley (SD) rats. The male and female rats were orally administered RGLS at doses of 0, 0.4, 1.2, and 4.0 g/kg once daily for a period of 26 weeks. The safety profile of RGLS was assessed through in vivo observations of survival, body weight, and food consumption; hematological, biochemical, and urine analyses; immunotoxicity assays; and histopathological examinations. The results showed that no significant systemic toxicity was observed following 26 weeks of repeated RGLS administration. Our data showed a no-observed adverse effect level (NOAEL) of 4.0 g/kg, which is approximately 20 times higher than the human equivalent dose. Our results support that RGLS can be considered a safe medicinal or food product that can be added to a healthy diet.


Assuntos
Ganoderma , Reishi , Humanos , Ratos , Masculino , Feminino , Animais , Esporos Fúngicos , Ratos Sprague-Dawley , Medicina Tradicional Chinesa , Nível de Efeito Adverso não Observado
12.
Aging (Albany NY) ; 15(20): 11588-11610, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37889539

RESUMO

BACKGROUND: Immunotherapy, as a form of immunobiological therapy, represents a promising approach for enhancing patients' immune responses. This work aims to present innovative ideas and insights for prognostic assessment and clinical treatment of stomach adenocarcinoma (STAD) by leveraging immunobiological signatures. METHODS: We employed weighted gene co-expression network analysis (WGCNA) and unsupervised clustering analysis to identify hub genes. These hub genes were utilized to construct a prognostic risk model, and their impact on the tumor microenvironment (TME) and DNA variations was assessed using large-scale STAD patient cohorts. Additionally, we conducted transfection experiments with plasmids to investigate the influence of SPP1 on the malignancy of HGC27 and NCI-N87 cells. RESULTS: Unsupervised clustering of 12 immune-related genes (IRGs) revealed three distinct alteration patterns with unique molecular phenotypes, clinicopathological characteristics, prognosis, and TME features. Using LASSO and multivariate Cox regression analyses, we identified three hub genes (MMP12, SPP1, PLAU) from the IRGs to establish a risk signature. This IRG-related risk model significantly stratified the prognosis risk among STAD patients in the training (n = 522), testing (n = 521), and validation (n = 300) cohorts. Notably, there were discernible differences in therapy responses and TME characteristics, such as tumor purity and lymphocyte infiltration, between the risk model groups. Subsequently, a nomogram that incorporates the IRG signature and clinicopathological factors demonstrated superior sensitivity and specificity in predicting outcomes for STAD patients. Furthermore, down-regulation of SPP1, as observed after siRNA transfection, significantly inhibited the proliferation and migration abilities of HGC27 and NCI-N87 cells. CONCLUSIONS: In summary, this study highlights the critical role of immune-related signatures in STAD and offers novel insights into prognosis indicators and immunotherapeutic targets for this condition. SPP1 emerges as an independent prognostic factor for STAD and appears to regulate STAD progression by influencing the immune microenvironment.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Neoplasias Gástricas/genética , Análise por Conglomerados , Regulação para Baixo , Prognóstico , Microambiente Tumoral/genética , Osteopontina
13.
DNA Cell Biol ; 42(11): 653-667, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37819746

RESUMO

Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.


Assuntos
Axônios , Células Ganglionares da Retina , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Axônios/metabolismo , Axônios/patologia
14.
Sci Rep ; 13(1): 15916, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741901

RESUMO

The composition of microbial microenvironment is an important factor affecting the development of tumor diseases. However, due to the limitations of current technological levels, we are still unable to fully study and elucidate the depth and breadth of the impact of microorganisms on tumors, especially whether microorganisms have an impact on cancer. Therefore, the purpose of this study is to conduct in-depth research on the role and mechanism of prostate microbiome in gastric cancer (GC) based on the related genes of bacterial lipopolysaccharide (LPS) by using bioinformatics methods. Through comparison in the Toxin Genomics Database (CTD), we can find and screen out the bacterial LPS related genes. In the study, Venn plots and lasso analysis were used to obtain differentially expressed LPS related hub genes (LRHG). Afterwards, in order to establish a prognostic risk score model and column chart in LRHG features, we used univariate and multivariate Cox regression analysis for modeling and composition. In addition, we also conducted in-depth research on the clinical role of immunotherapy with TMB, MSI, KRAS mutants, and TIDE scores. We screened 9 LRHGs in the database. We constructed a prognostic risk score and column chart based on LRHG, indicating that low risk scores have a protective effect on patients. We particularly found that low risk scores are beneficial for immunotherapy through TIDE score evaluation. Based on LPS related hub genes, we established a LRHG signature, which can help predict immunotherapy and prognosis for GC patients. Bacterial lipopolysaccharide related genes can also be biomarkers to predict progression free survival in GC patients.


Assuntos
Lipopolissacarídeos , Neoplasias Gástricas , Masculino , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Prognóstico , Biomarcadores , Imunoterapia , Microambiente Tumoral/genética
15.
Behav Brain Res ; 452: 114586, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37467965

RESUMO

Fragile X syndrome (FXS) is a common inherited cause of intellectual disabilities and single-gene cause of autism spectrum disorder (ASD), resulting from the loss of functional fragile X messenger ribonucleoprotein (FMRP), an RNA-binding protein (RBP) encoded by the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Ribonucleic acid (RNA) methylation can lead to developmental diseases, including FXS, through various mechanisms mediated by 5-hydroxymethylcytosine, 5-methylcytosine, N6-methyladenosine, etc. Emerging evidence suggests that modifications of some RNA species have been linked to FXS. However, the underlying pathological mechanism has yet to be elucidated. In this review, we reviewed the implication of RNA modification in FXS and summarized its specific characteristics for facilitating the identification of new therapeutic targets.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Transtorno do Espectro Autista/genética , RNA/metabolismo , Metilação , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo
16.
Cell Mol Neurobiol ; 43(7): 3265-3276, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391574

RESUMO

The retinal pigment epithelium (RPE) is a highly specialized and polarized epithelial cell layer that plays an important role in sustaining the structural and functional integrity of photoreceptors. However, the death of RPE is a common pathological feature in various retinal diseases, especially in age-related macular degeneration (AMD) and diabetic retinopathy (DR). Mitophagy, as a programmed self-degradation of dysfunctional mitochondria, is crucial for maintaining cellular homeostasis and cell survival under stress. RPE contains a high density of mitochondria necessary for it to meet energy demands, so severe stimuli can cause mitochondrial dysfunction and the excess generation of intracellular reactive oxygen species (ROS), which can further trigger oxidative stress-involved mitophagy. In this review, we summarize the classical pathways of oxidative stress-involved mitophagy in RPE and investigate its role in the progression of retinal diseases, aiming to provide a new therapeutic strategy for treating retinal degenerative diseases. The role of mitophagy in AMD and DR. In AMD, excessive ROS production promotes mitophagy in the RPE by activating the Nrf2/p62 pathway, while in DR, ROS may suppress mitophagy by the FOXO3-PINK1/parkin signaling pathway or the TXNIP-mitochondria-lysosome-mediated mitophagy.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitofagia , Estresse Oxidativo/fisiologia
17.
Inflamm Regen ; 43(1): 31, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340465

RESUMO

BACKGROUND: In addition to rescuing injured retinal ganglion cells (RGCs) by stimulating the intrinsic growth ability of damaged RGCs in various retinal/optic neuropathies, increasing evidence has shown that the external microenvironmental factors also play a crucial role in restoring the survival of RGCs by promoting the regrowth of RGC axons, especially inflammatory factors. In this study, we aimed to screen out the underlying inflammatory factor involved in the signaling of staurosporine (STS)-induced axon regeneration and verify its role in the protection of RGCs and the promotion of axon regrowth. METHODS: We performed transcriptome RNA sequencing for STS induction models in vitro and analyzed the differentially expressed genes. After targeting the key gene, we verified the role of the candidate factor in RGC protection and promotion of axon regeneration in vivo with two RGC-injured animal models (optic nerve crush, ONC; retinal N-methyl-D-aspartate, NMDA damage) by using cholera toxin subunit B anterograde axon tracing and specific immunostaining of RGCs. RESULTS: We found that a series of inflammatory genes expressed upregulated in the signaling of STS-induced axon regrowth and we targeted the candidate CXCL2 gene since the level of the chemokine CXCL2 gene elevated significantly among the top upregulated genes. We further demonstrated that intravitreal injection of rCXCL2 robustly promoted axon regeneration and significantly improved RGC survival in ONC-injured mice in vivo. However, different from its role in ONC model, the intravitreal injection of rCXCL2 was able to simply protect RGCs against NMDA-induced excitotoxicity in mouse retina and maintain the long-distance projection of RGC axons, yet failed to promote significant axon regeneration. CONCLUSIONS: We provide the first in vivo evidence that CXCL2, as an inflammatory factor, is a key regulator in the axon regeneration and neuroprotection of RGCs. Our comparative study may facilitate deciphering the exact molecular mechanisms of RGC axon regeneration and developing high-potency targeted drugs.

18.
Sci Rep ; 13(1): 7366, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147453

RESUMO

Colon cancer (CC) has a poor 5-year survival rate though the treatment techniques and strategies have been improved. Succinylation and long noncoding RNAs (lncRNAs) have prognostic value for CC patients. We analyzed and obtained succinylation-related lncRNA by co-expression in CC. A novel succinylation-related lncRNA model was developed by univariate and Least absolute shrinkage and selection operator (Lasso) regression analysis and we used principal component analysis (PCA), functional enrichment annotation, tumor immune environment, drug sensitivity and nomogram to verify the model, respectively. Six succinylation-related lncRNAs in our model were finally confirmed to distinguish the survival status of CC and showed statistically significant differences in training set, testing set, and entire set. The prognosis of with this model was associated with age, gender, M0 stage, N2 stage, T3 + T4 stage and Stage III + IV. The high-risk group showed a higher mutation rate than the low-risk group. We constructed a model to predict overall survival for 1-, 3-, and 5-year with AUCs of 0.694, 0.729, and 0.802, respectively. The high-risk group was sensitive to Cisplatin and Temozolomide compounds. Our study provided novel insights into the value of the succinylation-related lncRNA signature as a predictor of prognosis, which had high clinical application value in the future.


Assuntos
Neoplasias do Colo , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Prognóstico , Neoplasias do Colo/genética , Nomogramas , Biologia Computacional
19.
Cent Eur J Immunol ; 48(1): 48-53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206590

RESUMO

Interleukin 35 (IL-35), a cytokine secreted by regulatory T (Treg) cells from the differentiation of conventional CD4+ T cells, is a member of the IL-12 family. The IL-12 family of cytokines exhibits an anti-inflammatory property. IL-35 has recently been shown to influence the immune modulation in various diseases, including inflammatory bowel disease, Graves' disease, rheumatoid arthritis, colitis, psoriasis, and type 1 diabetes (T1D). T1D is an immune-related disease caused by destruction of pancreatic ß cells, characterized by an absolute lack of insulin. Recently, studies have suggested that protective effects of IL-35 work by improving blood glucose levels and preventing an attack of inflammatory factors on the islets. The protective mechanism may be closely related to the anti-inflammatory properties of IL-35, which include regulating macrophage phenotype, suppressing T cell proliferation, decreasing the differentiation of Th17 cells, increasing the Treg cell population, and inducing IL-35-producing regulatory T cells (iTr35). Here, we review the protective effects and mechanisms of action of IL-35 in T1D.

20.
Metab Brain Dis ; 38(7): 2369-2381, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37256467

RESUMO

Neuropsychiatric disorders have a high incidence worldwide. Kinesins, a family of microtubule-based molecular motor proteins, play essential roles in intracellular and axonal transport. Variants of kinesins have been found to be related to many diseases, including neurodevelopmental/neurodegenerative disorders. Kinesin-12 (also known as Kif15) was previously found to affect the frequency of both directional microtubule transports. However, whether Kif15 deficiency impacts mood in mice is yet to be investigated. In this study, we used the CRISPR/Cas9 method to obtain Kif15-/- mice. In behavioral tests, Kif15-/- female mice exhibited prominent depressive characteristics. Further studies showed that the expression of BDNF was significantly decreased in the frontal cortex, corpus callosum, and hippocampus of Kif15-/- mice, along with the upregulation of Interleukin-6 and Interleukin-1ß in the corpus callosum. In addition, the expression patterns of AnkG were notably changed in the developing brain of Kif15-/- mice. Based on our previous studies, we suggested that this appearance of altered AnkG was due to the maladjustment of the microtubule patterns induced by Kif15 deficiency. The distribution of PSD95 in neurites notably decreased after cultured neurons treated with the Kif15 inhibitor, but total PSD95 protein level was not impacted, which revealed that Kif15 may contribute to PSD95 transportation. This study suggested that Kif15 may serve as a potential target for future depression studies.


Assuntos
Depressão , Cinesinas , Animais , Feminino , Camundongos , Depressão/genética , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...